Bioengineering 143/243 Computational Methods in Biology

An introduction to biophysical simulation methods and algorithms, including molecular dynamics, Brownian dynamics, Monte Carlo, mathematical optimization, and "non-algorithmic" computation such as neural networks. Various "case studies" in applying these methods in the areas of protein folding, protein structure prediction, ligand binding, aggregation and protein enzymatics will be covered. A team competition in methods development and prediction on lattice proteins serves as the final exam, and will utilize high performance computing facilities at NERSC.

Instructor: Teresa Head-Gordon, Department of Bioengineering 204 Calvin, TLHead-Gordon@lbl.gov

Teaching Assistant: Margaret Johnson, Department of Bioengineering 214 Calvin, mej47@berkeley.edu

Offered: Spring semester, 2007

Units: 4

Prerequisites: Math 53 and 54. Graduate students must be able to or willing to learn to program in a scientific computing language (C, C++, Fortran) or Java.

Workload: 3 hours of lecture per week plus one hour of lab. Instructor will hold office hours for two hours per week. There will be one in-class exam, weekly homework, and one final exam project. The projects will involve application of learned algorithms and methods and team participation in a class competition. An organized presentation of the final project is to be presented orally and posted on the course web site.

Assessment: Mid-term exam: 20%

Homework: 40% Final Project: 40%

Text: Understanding Molecular Simulation: From algorithms to applications, D. Frenkel and B. Smit (Academic Press, 1996).

Text Resources: Computer Simulation of Liquids, M. P. Allen and D.J. Tildesley (Oxford Univ. Press) 1997. Numerical Recipes, the Art of Scientific Computing, W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling (Cambridge) 1989. Molecular Modelling: Principles and Applications, Andrew R. Leach, Prentice Hall.

Syllabus:

January 17, 19: (1, 2) Introduction to Molecular Biology and Biophysics

Class organization, Intro to Physical Theories of Matter/Connections to Simulations, Molecular Biology Primer on Sequence, Structure, Function, Protein folding and disease, Protein-Ligand or Protein-

Protein Interactions

January 22, 24: (3, 4) Potential Energy Surface and Model Interations

Potential energy surface, All atom models: ab initio vs. empirical potential energy surfaces, Coarse-grained protein models: lattice

and off-lattice bead models

January 26, 29: (5, 6) Probability Theory

Elementary probability, Stochastic variables, Probability distribution functions, Discrete distributions: Binomial, Poisson, Random walk in 1D, 3D, Continuous distribution: Normal or

Gaussian, Central limit theorem

Jan. 31, Feb. 2, 5: (7, 8, 9) Introduction to Monte Carlo Methods

Monte Carlo Integration, Importance Sampling, Markov chain; Detailed balance, Metropolis Monte Carlo, Illustrated for atomic

clusters and for chain molecules

Lattice protein folding

Feb. 7, 9, 12, 14, 16: (10, 11, 12, 13, 14) Introduction to Molecular Dynamics

Time vs. ensemble average, Symplectic properties and stable numerical trajectories, Numerical integration scheme: Verlet, Velocity Verlet, Beeman, Predictor-Corrector, Velocity assignment: Box Mueller, Temperature, Truncation schemes and corrections,

Neighbor Lists

Liquid water and hydrophobic effect

Feb. 21, 23, 26, 28: (15, 16, 17, 18) Introduction to Optimization

Mathematical optimization: definitions

Local optimization: Golden Section; bracketing minima, Steepest

descent, Conjugate gradients, Newton Method, BFGS

Global optimization: Simulated Annealing, Dynamic programming,

Branch and Bound Lennard-Jones clusters

March 2, 5, 7, 9: (19, 20, 21, 22) Biology Inspired Computing

Genetic Algorithms, Neural Networks, DNA Computing

Protein structure prediction

March 12, 14, 16: (23, 24, 25) Free Energy Simulation Methods

Widom insertion / deletion, Umbrella sampling, Thermodynamic

integration, Acceptance ratio methods

Protein-ligand binding

March 19, 21, 23: Mid-Term exam review

In class exam

(26) Class Competition in Simulation and Prediction

March 26-30: Spring Break

April 2, 4, 6: (27, 28, 29) Coarse-Grained Simulation Methods

Langevin equation, Brownian Dyanmics, Multipole expansions

Debye-Huckel, Hydrodynamic Interactions

Protein enzymatics

April 9, 11, 13, 16, 18: (30, 31, 32, 33, 34) Advanced Monte Carlo Methods

Microcanonical, canonical, and other ensembles, Hybrid Monte Carlo/Molecular Dynamics, Smart Monte Carlo: Force Bias, Configurational-bias Monte Carlo, Lattice chains, Flexible chains,

Stiff chains

Protein aggregation

April 20, 23, 25, 27, 30: (35, 36, 37, 38, 39) Advanced Molecular Dynamics Methods

Stochastic and Extended System methods, Algorithms for Dynamics in NVT and NPT ensembles: Nose-Hoover thermostats and barostats, Multiple time step approaches, Constraint dynamics,

Ewald methods

May 2, 4, 7: (40, 41) Simulation Methods of the Future

Quantum Chemistry and Ab initio MD, MultiScale Models

May 8: Written reports due in lab

Final Exam (Oral): Competition Results and Presentation by Group Leaders